Missing data imputation using fuzzy-rough methods

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Missing data imputation in multivariable time series data

Multivariate time series data are found in a variety of fields such as bioinformatics, biology, genetics, astronomy, geography and finance. Many time series datasets contain missing data. Multivariate time series missing data imputation is a challenging topic and needs to be carefully considered before learning or predicting time series. Frequent researches have been done on the use of diffe...

متن کامل

On classification with missing data using rough-neuro-fuzzy systems

The paper presents a new approach to fuzzy classification in the case of missing data. Rough-fuzzy sets are incorporated into logical type neuro-fuzzy structures and a rough-neuro-fuzzy classifier is derived. Theorems which allow determining the structure of the rough-neuro-fuzzy classifier are given. Several experiments illustrating the performance of the roughneuro-fuzzy classifier working in...

متن کامل

Missing data imputation for fuzzy rule-based classification systems

Fuzzy rule-based classification systems (FRBCSs) are known due to their ability to treat with low quality data and obtain good results in these scenarios. However, their application in problems with missing data are uncommon while in real-life data, information is frequently incomplete in data mining, caused by the presence of missing values in attributes. Several schemes have been studied to o...

متن کامل

Comparison of missing value imputation methods for crop yield data

Most ecological data sets contain missing values, a fact which can cause problems in the analysis and limit the utility of resulting inference. However, ecological data also tend to be spatially correlated, which can aid in estimating and imputing missing values. We compared four existing methods of estimating missing values: regression, kernel smoothing, universal kriging, and multiple imputat...

متن کامل

Missing Data and Imputation Methods in Partition of Variables

We deal with the effect of missing data under a ”Missing at Random Model” on classification of variables with non hierarchical methods. The partitions are compared by the Rand’s index.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Neurocomputing

سال: 2016

ISSN: 0925-2312

DOI: 10.1016/j.neucom.2016.04.015